Shroom, a PDZ Domain–Containing Actin-Binding Protein, Is Required for Neural Tube Morphogenesis in Mice

نویسندگان

  • Jeffrey D Hildebrand
  • Philippe Soriano
چکیده

Using gene trap mutagenesis, we have identified a mutation in mice that causes exencephaly, acrania, facial clefting, and spina bifida, all of which can be attributed to failed neural tube closure. This mutation is designated shroom (shrm) because the neural folds "mushroom" outward and do not converge at the dorsal midline. shrm encodes a PDZ domain protein that is involved at several levels in regulating aspects of cytoarchitecture. First, endogenous Shrm localizes to adherens junctions and the cytoskeleton. Second, ectopically expressed Shrm alters the subcellular distribution of F-actin. Third, Shrm directly binds F-actin. Finally, cytoskeletal polarity within the neuroepithelium is perturbed in mutant embryos. In concert, these observations suggest that Shrm is a critical determinant of the cellular architecture required for proper neurulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network.

The actin-binding protein Shroom is essential for neural tube morphogenesis in multiple vertebrate organisms, indicating its function is evolutionarily conserved. Shroom facilitates neurulation by regulating the morphology of neurepithelial cells. Shroom localizes to the apical tip of adherens junctions of neural ectoderm cells in vivo and to the apical junctional complex (AJC) in MDCK cells. I...

متن کامل

Morphogenesis: Shroom in to Close the Neural Tube

A novel actin-binding protein, Shroom, localises to precisely those cells that will constrict during cranial neural tube closure and appears pivotal in regulating the apical constrictions that drive epithelial foldings in vertebrate embryos.

متن کامل

Shroom Induces Apical Constriction and Is Required for Hingepoint Formation during Neural Tube Closure

BACKGROUND The morphogenetic events of early vertebrate development generally involve the combined actions of several populations of cells, each engaged in a distinct behavior. Neural tube closure, for instance, involves apicobasal cell heightening, apical constriction at hingepoints, convergent extension of the midline, and pushing by the epidermis. Although a large number of genes are known t...

متن کامل

Lulu Regulates Shroom-Induced Apical Constriction during Neural Tube Closure

Apical constriction is an essential cell behavior during neural tube closure, but its underlying mechanisms are not fully understood. Lulu, or EPB4.1l5, is a FERM domain protein that has been implicated in apical constriction and actomyosin contractility in mouse embryos and cultured cells. Interference with the function of Lulu in Xenopus embryos by a specific antisense morpholino oligonucleot...

متن کامل

Differential Actin-dependent Localization Modulates the Evolutionarily Conserved Activity of Shroom

Shroom is an actin-associated determinant of cell morphology that is required for neural tube closure in both mice and frogs. Shroom regulates this process by causing apical constriction of epithelial cells via a pathway involvingmyosin II.Herewe report on characterization of the Shroom-related proteins Apxl andKIAA1202 and their role in cell architecture. Shroom,Apxl, and KIAA1202 exhibit diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 99  شماره 

صفحات  -

تاریخ انتشار 1999